Saturday, February 14, 2009

Siftables - the smart blocks


Video on TED.com David Merrill demos Siftables, the smart blocks A very cool application of manipulatives in computing...

Revolutionary Chip uses 30 times less electricity

Rice National Media Site Revolutionary Chip uses 30 times less electricity: "In the first real-world test of a revolutionary type of computing that thrives on random errors, scientists have created a microchip that uses 30 times less electricity while running seven times faster than today's best technology. The U.S.-Singapore team developing the technology, dubbed PCMOS [pronounced 'pee-cee-moss'], revealed the results here today at the International Solid-State Circuits Conference (ISSCC), the world's premier forum for engineers working at the cutting edge of integrated-circuit design.

Conceived by Rice University Professor Krishna Palem, PCMOS piggybacks on the 'complementary metal-oxide semiconductor' technology, or CMOS, that chipmakers already use. That means chipmakers won't have to buy new equipment to support PCMOS, or 'probabilistic' CMOS. Although PCMOS runs on standard silicon, it breaks with computing's past by abandoning the set of mathematical rules -- called Boolean logic -- that have thus far been used in all digital computers. PCMOS instead uses probabilistic logic, a new form of logic developed by Palem and his doctoral student, Lakshmi Chakrapani."

Semantic Web to contribute to Sustainability?


ICT Results Semantic web promises a smarter electricity grid: "Working in the EU-funded S-TEN project, the team developed a generic framework for novel ICT architectures and applied semantic web technologies to make networks ‘self-describing’ so that each component – be it a volt meter on a wind turbine or a thermometer on a weather station – autonomously publishes information about what it is, where it is, and what it does.

Because semantic data can be understood by machines as well as humans, the approach should lead to more efficient automated grid management and better decision-support for human operators. Smart power grids, efficiently supplying a town or city from locally generated electricity and then feeding it into a wider supply network, could therefore be more easily and cost-effectively set up.

“Instead of storing information in a centralised database, the S-TEN approach is for each node, each sensor or device connected to the network, to have its own intelligence,” Schowe-von der Brelie says."